
Computation of generalised spheroidal eigenfunctions and eigenvalues

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1989 J. Phys. A: Math. Gen. 22 4089

(http://iopscience.iop.org/0305-4470/22/18/040)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 07:00

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/22/18
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 22 (1989) 4089-4097. Printed in the U K  

COMMENT 

Computation of generalised spheroidal eigenfunctions and 
eigenvalues 
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Faculty of Chemistry, A Mickiewicz University, PL 60-780 Poznab, Poland 

Received 21 February 1989 

Abstract. Methods of solving the equation for generalised spheroidal eigenfunctions and 
eigenvalues are considered. An efficient variational method with Jacobi basis functions is 
worked out. Simple recurrence formulae are derived for analytical calculations of all matrix 
elements required to solve the variational problem. A fast algorithm for computing 
generalised spheroidal eigenvalues is proposed. 

1. Introduction 

Spheroidal harmonics have numerous applications in quantum mechanics, radiophysics 
and optics. The main results concerning the properties of these functions are contained 
in the monographs of Morse and Feshbach (1953), Meixner and Schafke (1954), 
Flammer (1957) and Abramowitz and Stegun (1964). A good review of the classical 
and  new results as well as applications of the spheroidal and  Coulomb spheroidal 
harmonics are presented in a recent monograph of Komarov et a1 (1976). 

In this paper we will consider generalised spheroidal (GS) eigenfunctions defined 
by the differential equation 

where 

2?( t )  = ( d / d  r ) (  t 2  - l ) d / d  r 
a > -1 and  b > -1 are real and  { c L }  are positive or negative real numbers. 

This equation has singular points at t = rtl and we will search for the regular 
solutions which must be square integrable on the interval -1 s t s + 1. The regularity 
is a boundary condition which can be satisfied only for certain values of 8. The regular 
G S  eigenfunction with n nodes will be denoted by S',",h'(t) and the corresponding 
eigenvalue by g,,. 

and V ( a ,  b ;  t )  = [ a ' / (  1 - t )  + b 2 / (  1 + r ) ] / 2  

Let us consider some important special cases of equation (1).  
For = 0 and a = b = m = 0, 1, . . . , the GS equation generates the associated 

For c2 # 0 and  ck = 0 for k # 2 ,  and a = b = m the GS eigenfunctions become identical 

For cz#O, c , # O  or c,=O, and c h = O  (for k # 1 , 2 ) ,  and a = b > - 1 ,  equation (1) 

Legendre polynomials P7+m( t ) .  

with spheroidal harmonics (Abramowitz and Stegun 1964). 

defines the Coulomb spheroidal functions (Komarov et a1 1976). 
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For ck = 0 and a, b > -1 the GS eigenfunctions take the form (Makarewicz 1988): 

)) ( t )  = (1 - t ) a ’ 2 (  1 + t)h’”::’.‘y t )  (2) p ( 0 . h )  

where p Y x b )  is the Jacobi polynomial, so the function P;?.‘’ will be henceforth called 
the Jacobi function. 

For Ck # 0 and a # 0 or (and)  h P 0, equation (1) is known in the theory of molecular 
vibrational and rovibrational states (Wallace 1982, 1983, 1984, Sage 1985, Makarewicz 
and Pyka 1989). In this case t =cos  6, where 6 is the vibrational coordinate describing 
the bending of molecular bonds. New applications of the GS equation in the theoretical 
rovibrational spectroscopy involve looking for effective methods of computation of 
the cis eigenfunctions and eigenvalues. 

2. The variational method of solving the GS equation 

Recently, the GS equation has been solved numerically by applying the Numerov 
method (Makarewicz and Pyka 1989). This method is efficient only if GS eigenfunctions 
with a small number of nodes n are required. For high n these functions quickly 
oscillate and the Numerov method becomes less accurate. Moreover, a large computer 
memory is required to store the eigenfunctions computed in a great number of grid 
points. The same applies to the relaxation method proposed recently for the computa- 
tion of spheroidal harmonics (Caldwell 1988). 

Here, we propose a variational method which is more effective, even if only a few 
isolated GS eigenfunctions or eigenvalues are required. The crucial point in the 
variational method is the choice of the basis functions into which the GS eigenfunctions 
can be expanded. In our problem the most convenient are Jacobi basis functions ( J B F )  

9’psp), mainly, due to to a simple calculation of the integrals needed for construction 
of the algebraic eigenvalue problem. These functions are parametrised by cy and /? 
which can be different from a and h in equation ( l ) ,  respectively. 9y3” are defined 
through the Jacobi polynomials (see equation (3)) which will be assumed to be 
normalised with the weight factor U (  t )  = (1 - t )“  (1 + t ) P .  This means that 

U (  t)p:y3’ ’( t )  p‘,U,’)( t )  d t  = S‘,“”’( t )9’::3B’(  t )  d t  = 1. l-: l-+,’ 
The normalised pp3” can be expressed by the standard Jacobi polynomials 
(Abramowitz and Stegun 1964) according to 

(3) Pp.”(t )  = { 2 - A n n ( 2 n + ~ ) r ( n  + ~ ) / [ r ( ~ + ~  + i)r(n + p  + i ) ] } ? ~ : : ~ ~ ~ ( t )  

where A = c y + p + l .  
The cis eigenfunctions can be expanded into a series of the Jacobi functions: 

and the coefficients ai can be determined by applying the Rayleigh-Ritz variational 
method, from a set of algebraic secular equations: 

( ( H - 8 1 ) ~ = 0  (5) 
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where 
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K 
H = L + ( a r  - a’ )M-,  + (b’ - P*)M+, + ckTL. 

k = l  

The matrix elements in equation (6) are defined as follows: 

L(n,  m ) = ( n  (2+ V )  m )  

M , ( n ,  m ) = $ ( n  ( 1 + s t ) - ’  m )  

T k ( n , m ) = ( n t k m )  

s = i l .  

The abbreviation ( n x m )  for an  arbitrary operator X ( t )  means 

( n X m ) =  [-+,I 9 ’ ~ 3 ’ 1 ( t ) X ( f ) 9 ’ ~ 5 ’ ) ( t )  dt. 

Since the J B F  fulfil 

where 

the integrals L(n ,  m )  can be immediately written as 

u n ,  m )  = &,(a,  P)%,.  

The analytic recurrence formulae for the elements T,(n, m )  and M , ( n ,  m )  are derived 
in appendix 1. 

The solution of the eigenvalue problem (5) can be simplified by the appropriate 
choice of non-linear parameters a and p specifying the JBF.  Let us first consider the 
case when the coefficients ck in (1) are small. Then the operator 2( t )  + V ( a ,  b ;  t )  plays 
a dominant role in equation (1). Hence, 9’!:*b’ will be a good approximation of the 
eigenfunction Sj,a3h’. This means that for small ck the choice a = a  and p = b is 
reasonable. 

It is important to notice that for a = a  and p = b the matrix H is simplified into 
L + I k  T k  which has a banded structure because the elements T’(n, m )  vanish if 
m >  n + k  (see appendix 1). Thus in order to determine the eigenvalues 8 and 
eigenvectors a we must diagonalise the symmetric band matrix. For such matrices 
very eiTective algorithms ( a  tridiagonalisation or Q R  algorithm (Wilkinson and Reinsch 
1971)) are available. 

If the eigenvalues are required alone, they can also be found as zeros of the 
determinant det(H - 81). In appendix 2 we propose a fast algorithm based on the 
recursive computation of the determinant of the band matrix. This algorithm is 
preferable if an isolated eigenvalue corresponding to a G S  eigenfunction with a given 
number of nodes must be determined. 

When the cL are large then the expansion of the eigenfunctions S::,” into the series 

In  this case it is better to optimise a and /3 to achieve the fast convergence of expansion 
(4). Such an  optimisation can be performed in a very simple way, as will be shown 
in the next section. 

of g p ( u . h )  , is slowly convergent, so the dimension of the diagonalised matrix H is large. 



4092 J Makarewicz 

3. Applications 

The proposed J B F  are universal, i.e. they can be applied in the whole range of the 
parameters a, b and c h .  In order to confirm this fact let us solve the usual spheroidal 
equation ( a  = b = m )  for large values of c2 # 0. In the standard method of computing 
the spheroidal harmonics the associated Legendre polynomials are used as basis 
functions. Let us note that they make a special case of the JBF, namely: P r T , , , ( t )  = 
@,m3m)(t) .  Thus, it is clear that the expansion of the spheroidal harmonics into these 
functions is ineffective for large c2. 

To find more appropriate basis functions, let us optimise the parameters a and p. 
For this purpose let us calculate the approximate eigenvalue @, by using only one JBF. 
Since in the considered case a = b then a = /3 and we obtain 

@,I( a )  = E,(  a )  + 2 (  m2 - a’) M-,(  n, n )  + c2 T2( H, n )  (10)  

where M _ , ( n ,  n )  is defined in (A1.4) and T2(n, n )  is given by 

T2(n, n )  = [ B ~ ’ “ ’ ] 2 + [ B ! ~ : ‘ ; ) ] 2  

(see (A1.2) and (A1.3)). Taking into account that for large c 2 ,  a >> 1, we obtain an 
approximate expression for T2( n, n ) :  

T,(n, n ) -  T 2 ( a ) = ( n + $ ) / a + M ( n ) / 4 a 2  (11) 

where 

M (  n )  = 3[ 1 + n2/  ( n  ++)I. 
This leads to 

@,,(a) = ( a  + n ) ( a  + n + l ) + ( m 2 - a 2 ) ( n  + a + ; ) / a  + c*T2(a) .  

a , - ~ ( l - M ( n ) / ~ ) ” ~  c = c > .  

From the condition d $?,, ( a ) / d a  = 0 we determine the optimum value of a : 

(12) 1 / 2  

For the ground state ( n  = 0) go( ao)  is the best variational estimate of the exact eigenvalue 
go. For higher states ( n  # 0) the variational principle is not valid because we use only 
one basis function which, in general, is not orthogonal to exact eigenfunctions of the 
lower states. However, the %,(ao) are close to the exact eigenvalues g,,. 

In table 1 we present the eigenvalues of the spheroidal harmonics calculated for 
large c2,  by applying the J B F  with a ,  determined from equation (12) .  We can see that 
for only one basis function the eigenvalues @(a,)  calculated according to equation 
(10) are charged with a small error A8, of the order of (or lower) for c 2 =  10 000 
and of lo-’ for c2 = 2500. For the lowest states, ten basis functions give A%‘,, = 
for c2 = 10 000 and A%’,I = lO-’-lO-’ for c, = 2500. We proved that such accurate 
eigenvalues can be calculated with the Legendre basis of dimension N = 5 0  for 
c 2 =  10000 and N - 3 5  for c2=2500. Thus, for large c2,  the computations of the 
spheroidal eigenfunctions and eigenvalues with the use of the J B F  are several times 
faster than those using the standard Legendre basis functions. Naturally, the same 
refers to a more general case when other parameters CI. are large. 

In order to illustrate the usefulness of the J B F  for solving the G S  equation, let us 
consider an  example from the field of molecular spectroscopy. The Schrodinger 
equation for the wavefunctions describing a bending vibration in a triatomic molecule 
has a form of equation (1) and the quantum energy of this vibration is equal to 
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Table 1. Eigenvalues [ %,,,,, - m ( m  + l ) ] /c  of the spheroidal equation calculated by using 
the JBF with (Y = a,, determined from (12). N is the dimension of the basis. 

~~ 

m n N = l  N = 5  N = l O  N = 1 5  

c2 = 2500 
0 0 

1 
2 

2 0 
1 
2 

c2 = 10 000 
0 0 

1 
2 

2 0 
1 
2 

0.985 0 0.984 923 6 0.984 923 05 1 
2.965 0 2.964615 2.964 61 1 20 
4.924 0 4.925 0 4.923 821 0 
0.945 8 0.945 748 3 0.945 747 766 
2.927 5 2.927 142 2.927 138 107 
4.888 4 4.889 3 4.888 161 

0.992 50 0.992 481 05 0.992 481 01 1 
2.982 50 2.982 404 8 2.982 404 567 
4.962 3 4.962 5 4.962 212 214 
0.972 70 0.972 684 09 0.972 684 055 
2.963 11 2.963 020 3 2.963 019 987 
4.943 3 4.943 5 4.943 252 890 

0.984 923 05 1 
2.964 61 1 166 
4.923 820 871 
0.945 747 766 
2.927 138 078 
4.888 160 894 

0.992 481 01 1 
2.982 404 567 
4.962212212 
0.972 684 055 
2.963 019 987 
4.943 252 888 

E,, = Be%',, where 1/B, is a moment of inertia characterising the bending motion 
(Makarewicz 1988, equations (4)-(9)). A typical potential energy function for this 
motion can be assumed to have the following general form: 

a 2 / [ 2 (  1 - t ) ]  + b 2 / [ 2 (  1 + t ) ]  + C k t k  f =cos 6. (13) 
k 

In table 2 we present the calculated vibrational transition energies of the HzO+ 
molecule for which we assumed the potential energy function with four non-zero 
parameters: a2,  c 1 ,  c2 and c3 ( b 2  = 0 since the equilibrium configuration of H,O+ is 
linear). The values of these parameters have been determined by fitting the calculated 
transition energies to the observed ones. 

We can see that the obtained results have a similar quality as those of Jungen et 
a1 (1980) who used a different vibrational coordinate and, consequently, a different 
form of the potential function adapted to linear molecules. Our potential function 
(13) is more general and can describe linear as well as non-linear molecules. 

Table 2. Comparison of the observed and calculated transition energies A€,, = E,.,, - E ,  
(in cm- ' )  for the bending vibration of the H 2 0 f  molecule. The values of the potential 
parameters (see equation (13)) are: a 2  = 1572, cI  = 108.7, c2 = -256.6 and cj  = -200.1. The 
parameter E,  = 33.655 cm-I. 

A€,, (obs) hE,(calc) h E,, ( cal c)  
U (Lew 1976) (Jungen et a /  1980) (this work) 

- 
1893.7 
1960.6 
2009.6 
2056.2 
2082.0 

0.0 
1682.2 
1808.4 
1896.3 
1961.7 
2012.0 
205 1.4 
2082.4 

0.0 
1650.7 
1797.6 
1893.5 
1961.5 
2012.1 
205 1.7 
2084.5 
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To compute the GS eigenvalues we applied the J R F  with a = a, because the c h  are 
much smaller than a' (see table 2).  Hence, the resulting matrix H had a banded 
structure and  its eigenvalues were determined by the method presented in appendix 
2. Only 15 basis functions 9:',0' were sufficient to obtain the energy levels E, with an  
accuracy of at least 1 0 - ~  cm-'. 

4. Summary 

In this comment we have presented a generalisation of the spheroidal equation which 
is very important because of its applications in the theory of molecular vibrations. 

A variational method of solving this equation was proposed. As the basis functions 
the J B F  were chosen since they are very flexible and can be used in the whole range 
of the parameters specifying the GS equation. Fast algorithms needed for efficient 
computing of the GS eigenvalues were worked out. The usefulness and advantages of 
the presented method in the theory of molecular vibrations are illustrated. 

Appendix 1 

In order to calculate the matrix elements Th(n, m )  = (nt 'm) we will use the recurrence 
relation for the normalised Jacobi polynomials which can be easily derived from an  
analogous relation for the standard Jacobi polynomials (Abramowitz and Stegun 1964): 

( A l . l )  By;T)Fy;T I (  t )  = [ t - At,Pj]Ff,al( t )  - B',",P iF',"Z:i( t )  

where 

A y s P i  = (p'  - a ' )[  (2n + h )' - 1 1 - '  h = a + P + l  

and 

B',",P) = 2{n(n + a ) ( n  + P ) ( n  + A  - 1)/[(2n + A  - 1)*(2n + A  -2)(2n 

Now, by multiplying both sides of equation ( A l . l )  by U (  f ) F z , P ' ( t )  and integrating 
them over t, we obtain 

( n  t n )  = A:," 

( n t  ( n + l ) ) = B y  

( n t ( n + i ) ) = O  for i >  1. 

(A1.2) 

The Jacobi functions 9'~~.a' form a complete set; hence for two arbitrary operators 
X (  t )  and Y (  t )  the equality 

( n X ( t ) Y ( t )  m ) = C ( n X ( t ) p ) ( L J  Y ( 0  m )  
I' 

is satisfied, and using it for X (  t )  = t and Y (  t )  = t h  we obtain the following recurrence 
relation: 

( n r h + ' ( n + i ) ) = ( n t ( n - l ) ) ( ( n - l )  t h  ( n + i ) )  

+ ( n r n ) ( n t h  ( n + i ) ) + ( n t  ( n + l ) ) ( ( n + l )  t h  ( n + i ) ) .  (A1.3) 
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It can easily be proved that for i > k the element ( n  r' ( n  + i ) )  = 0. Thus, for a given 
k we have k +  1 equations of the form of (A1.3). Let us write these equations for k = 1: 

( n r ( n - 1 ) )  ( n t n )  

0 0 

All elements occurring on the right-hand side of the above equation can be expressed 
by A',",p) and B::,p) with m = n, n + 1 and n $ 2 .  Now, knowing ( n  t 2  m) we can calculate 
( n  t 3  m), etc. In this way we can determine successively all elements for an  arbitrary 
value of k. 

In order to calculate the integrals M , ( n ,  m )  (see equation ( 7 ) )  for s =*l  let us 
consider equation (8). Since e , ( a , P )  is an eigenvalue corresponding to Sy,pl the 
relations 

a ~ , ( ( ~ , p ) / a ~ ~ = a ( n  ( ~ + v ) n ) / a a = a < n ( i - t ) - ' n )  

a ~ , , ( a ,  @)lap  = a ( n  (T+ V )  n ) / a p  = @ ( n  (1  + r ) - '  n )  

and 

hold. Thus, taking into account equation (9), we have 

M-,(n ,  n )  = (2v+  1 ) / ( 4 a )  and M+i(n, n )  = ( 2 v +  1) / (4p ) .  (A1.4) 

The non-diagonal elements M y (  n, m )  can be calculated by applying the Cristoff el- 
Darboux relation (Abramowitz and Stegun 1964) which for the normalised Jacobi 
polynomials has the form 

C l j Y J j ) ( t ) l j j p % p ) ( s )  = By;T1(t - s ) - ' [ P ~ ~ I : ) ( r ) l j j p , P ) ( s )  - FrJ'(t)Ff;,Ui(S)l. ( ~ 1 . 5 )  

Let us multiply both sides of equation (A1.5) by w ( r ) l j t , P 1 ( t )  and integrate them over 
the variable t .  We obtain 

n 

k 

This equation, for m > n, gives 

M,(m, n + l ) = - s M , ( m ,  n ) R ) , a 3 P 1 ( ~ )  (A1.6) 

where 

R r5p )( s ) = FF;f ' (s)/ I'p3p '( s) . 
Taking the values of the Jacobi polynomials at the point s = rl we obtain 

R p " ) ( - l )  ={(2n + A  + 2 ) ( n  + A ) ( n  + a + 1)/[(2n + A ) ( n  + l ) ( n  + p  + l)]}"' 

and 

(A1 $ 7 )  

R f * P ' ( + l ) = - [ ( n + p +  l ) / ( n + a +  l ) ] R ~ ~ " ' ( - l ) .  

Finally, in order to reach the numerically stable recursion we rewrite (A1.6) to the 
following form: 

M,(  n, (A1.8) 
From this relation we can generate all non-diagonal elements by substituting k = 1, 
2 , .  . ., n into (A1.8). 

- k )  = -sM,( n,  t~ + 1 - k)/R',"'"(s). 
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Appendix 2 

The eigenvalues of a symmetric band matrix, for example, a heptadiagonal matrix: 

A ,  B2 C3 D4 0 0 . . .  

0 D N  c v  B N  AN 

can be calculated as zeros of the determinant A( 8) = det(H - 81). The standard method 
of finding the zeros of A( 8) of a tridiagonal matrix is based on a bisection algorithm 
(Wilkinson and  Reinsch 1971). In this algorithm a sequence of leading principal 
minors A h ( S ’ ) ( k  = 1 , 2 , .  . . , N )  for a trial value 8’ must be computed. However, the 
method in which the values of Wk( E ’ )  = A k (  S‘ ) /Ak- , (  S’) are computed is simpler and  
stable numerically. For a tridiagonal matrix, the WA are generated from the recursion 
which is started from 

w, =a,  
and then is continued from k = 1 to N - 1: 

* 
Wh-1 =A,+,- Bi+l/ w k  where Ak SE Ah - 8’. 

For band matrices wider than tridiagonal the bisection algorithm can be efficiently 
applied if WA can be computed recursively. For a pentadiagonal matrix we derived 
such a recursion which is started from 

WO” 

W,  =A, Z ,  = B Z / A l  

W, = A, - B2Z, 

and then is continued from k = 1 to N - 2: 
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